¿Para qué sirven las ranuras de Expansión?
Las tarjetas de expansión son dispositivos con diversos circuitos integrados y controladores que, insertadas en sus correspondientes ranuras de expansión, sirven para ampliar las capacidades de un ordenador. Las tarjetas de expansión más comunes sirven para añadir memoria, controladoras de unidad de disco, controladoras de vídeo, puertos serie o paralelo y dispositivos de módem internos. Por lo general, se suelen utilizar indistintamente los términos «placa» y «tarjeta» para referirse a todas las tarjetas de expansión.
Ranuras ISA
ISA se creó como un sistema de 8 bits en el IBM PC en 1980, y se extendió en 1983 como el XT bus architecture. El nuevo estándar de 16 bits se introduce en 1984 y se le llama habitualmente AT bus architecture. Diseñado para conectar tarjetas de ampliación a la placa madre, el protocolo también permite el bus mastering aunque sólo los primeros 16 MiB de la memoria principal están disponibles para acceso directo. El bus de 8 bits funciona a 4,77 MHz (la misma velocidad que el procesador Intel 8088 empleado en el IBM PC), mientras que el de 16 bits opera a 8 MHz (el de Intel 80286 del IBM AT). Está también disponible en algunas máquinas que no son compatibles IBM PC, como el AT&T Hobby (de corta historia), los Commodore Amiga 2000 y los BeBoxbasados en PowerPC. Físicamente, el slot XT es un conector de borde de tarjeta de 62 contactos (31 por cara) y 8,5 centímetro, mientras que el AT se añade un segundo conector de 36 contactos (18 por cara), con un tamaño de 14 cm. Ambos suelen ser en color negro. Al ser retro compatibles, puede conectarse una tarjeta XT en un slot AT sin problemas, excepto en placas mal diseñadas.
En 1987, IBM comienza a reemplazar el bus ISA por su bus propietario MCA Micro ChanneArchitecture en un intento por recuperar el control de la arquitectura PC y con ello del mercado PC. El sistema es mucho más avanzado que ISA, pero incompatible física y lógicamente, por lo que los fabricantes de ordenadores responden con el Extended Industry Standard Architecture (EISA) y posteriormente con el VESA Loca Bus (VLB). De hecho, VLB usa algunas partes originalmente diseñados para MCA debido a que los fabricantes de componentes ya tienen la habilidad de fabricarlos. Ambos son extensiones compatibles con el estándar ISA.
Los usuarios de máquinas basadas en ISA tenían que disponer de información especial sobre el hardware que iban a añadir al sistema. Aunque un puñado de tarjetas eran esencialmente Plug-and-play (enchufar y listo), no era lo habitual. Frecuentemente había que configurar varias cosas al añadir un nuevo dispositivo, como la IRQ, las direcciones de entrada/salida, o el canal DMA. MCA había resuelto esos problemas, y actualmente PCI incorpora muchas de las ideas que nacieron con MCA (aunque descienden más directamente de EISA).
Estos problema con la configuración llevaron a la creación de ISA PnP, un sistema Plug-and-play que usa una combinación de modificaciones al hardware, la BIOS del sistema, y el software del sistema operativo que automáticamente maneja los detalles más gruesos. En realidad, ISA PnP acabó convirtiéndose en un dolor de cabeza crónico, y nunca fue bien soportado excepto al final de la historia de ISA. De ahí proviene la extensión de la frase sarcástica "plug-and-pray" (enchufar y rezar)
El ancho de banda máximo del bus ISA de 16 bits es de 16 Mbyte/segundo. Este ancho de banda es insuficiente para las necesidades actuales, tales como tarjetas de vídeo de alta resolución, por lo que el bus ISA no se emplea en los PC modernos (2004), en los que ha sido sustituido por el bus PCI.
Ranuras PCI
PCI (Peripheral Component Interconnect) Es un estándar abierto desarrollado por Intel en tiempos del 486. Permite interconectar tarjetas de vídeo, audio, adaptadores de red y otros muchos periféricos con la placa base. El estándar PCI 2.3 llega a manejar 32 bits a 33/66MHz con tasas de transferencia de datos de 133MB/s y 266MB/s respectivamente. No obstante y hoy en día Intel impulsa decididamente el estándar PCI express, que en su versión x16 y funcionando en modo dual proporciona una tasa de transferencia de datos de 8GB/s, ni más ni menos que 30 veces más que PCI 2.3.
La fotografía superior nos muestra una ranura PCI (en blanco) y otra PCI-express x16 (en negro), las tarjetas diseñadas para una y otra son incompatibles entre sí. Normalmente el bus PCI de la placa base admite un máximo de cuatro ranuras numeradas del 1 al 4, pueden existir una quinta ranura PCI pero en realidad está compartida. Por ejemplo: con otra ranura ISA como la que se reproduce en la foto inferior.
La primera ranura PCI se utilizaba para el adaptador gráfico, pero se sustituyó por la ranura AGP específicamente diseñada para esta tarea. AGP (AcceleratedGraphics Port) es un estándar introducido por Intel en 1996 y en su versión 8x puede sincronizar con frecuencias de bus de 533MHz y ofrecer tasas de transferencia de 2GB/s.
Busca la documentación de la placa base de tu equipo, observa el plano (layout) de la placa base. ¿Cuantas ranuras PCI incluye? ¿Alguna está compartida? ¿Cuántas ranuras AGP? Responde indicando siempre cual es el chipset.
Ranuras AGP
Accelerated Graphics Port o AGP (en español "puerto de gráficos acelerado) es un puerto (puesto que sólo se puede conectar un dispositivo, mientras que en el bus se pueden conectar varios) desarrollado por Intel en 1996 como solución a los cuellos de botella que se producían en las tarjetas gráficas que usaban el bus PCI. El diseño parte de las especificaciones del PCI 2.1.
El puerto AGP es de 32 bits como PCI pero cuenta con notables diferencias como 8 canales más adicionales para acceso a la memoria de acceso aleatorio (RAM). Además puede acceder directamente a esta a través del puente norte pudiendo emular así memoria de vídeo en la RAM. La velocidad del bus es de 66 MHz.
El bus AGP cuenta con diferentes modos de funcionamiento.
- AGP 1X: velocidad 66 MHz con una tasa de transferencia de 266 MB/s y funcionando a un voltaje de 3,3V.
- AGP 2X: velocidad 133 MHz con una tasa de transferencia de 532 MB/s y funcionando a un voltaje de 3,3V.
- AGP 4X: velocidad 266 MHz con una tasa de transferencia de 1 GB/s y funcionando a un voltaje de 3,3 o 1,5V para adaptarse a los diseños de las tarjetas gráficas.
- AGP 8X: velocidad 533 MHz con una tasa de transferencia de 2 GB/s y funcionando a un voltaje de 0,7V o 1,5V.
Estas tasas de transferencias se consiguen aprovechando los ciclos de reloj del bus mediante un multiplicador pero sin modificarlos físicamente.
El puerto AGP se utiliza exclusivamente para conectar tarjetas gráficas, y debido a su arquitectura sólo puede haber una ranura. Dicha ranura mide unos 8 cm y se encuentra a un lado de las ranuras PCI.
A partir de 2006, el uso del puerto AGP ha ido disminuyendo con la aparición de una nueva evolución conocida como PCI-Express, y proporciona mayores prestaciones en cuanto a frecuencia y ancho de banda. Así, los principales fabricantes de tarjetas gráficas, como ATI y nVIDIA, han ido presentando cada vez menos productos para este puerto.
Ranuras PCI Express
PCI Express (anteriormente conocido por las siglas 3GIO, en el caso de las "Entradas/Salidas de Tercera Generación", en inglés: 3rd Generation I/O) es un nuevo desarrollo del bus PCI que usa los conceptos de programación y los estándares de comunicación existentes, pero se basa en un sistema de comunicación serie mucho más rápido. Este sistema es apoyado principalmente por Intel, que empezó a desarrollar el estándar con nombre de proyecto Arapahoe después de retirarse del sistema Infiniband.
PCI Express es abreviado como PCI-E o PCIe, aunque erróneamente se le suele abreviar como PCI-X o PCIx. Sin embargo, PCI Express no tiene nada que ver conPCI-X que es una evolución de PCI, en la que se consigue aumentar el ancho de banda mediante el incremento de la frecuencia, llegando a ser 32 veces más rápido que el PCI 2.1. Su velocidad es mayor que PCI-Express, pero presenta el inconveniente de que al instalar más de un dispositivo la frecuencia base se reduce y pierde velocidad de transmisión.
Ranuras MMC
MultiMediaCard o MMC es un estándar de tarjeta de memoria. Prácticamente igual a la SD, carece de la pestaña de seguridad que evita sobrescribir la información grabada en ella. Su forma está inspirada en el aspecto de los antiguos disquetes de 3,5 pulgadas. Actualmente ofrece una capacidad máxima de 8 GB.
Presentada en 1997 por Siemens AG y SanDisk, se basa en la memoria flash de Toshiba base NAND, y por ello es más pequeña que sistemas anteriores basados en memorias flash de Intel base NOR, tal como la Compact Flash. MMC tiene el tamaño de un sello de correos: 24 mm x 32 mm x 1,4 mm. Originalmente usaba una interfaz serie de 1-bits pero versiones recientes de la especificación permite transferencias de 4 o a veces incluso 8 bits de una vez. Han sido más o menos suplantadas por las Secure Digital SD, pero siguen teniendo un uso importante porque las MMCs pueden usarse en la mayoría de aparatos que soportan tarjetas SD (son prácticamente iguales), pudiendo retirarse fácilmente para leerse en un PC.
Las MMC están actualmente disponibles en tamaños de hasta 8GB anunciados, aún no disponibles. Se usan en casi cualquier contexto donde se usen tarjetas de memoria, como teléfonos móviles, reproductores de audio digital, cámaras digitales y PDAs. Desde la introducción de la tarjeta Secure Digital y la ranura SDIO (Secure Digital Input/Output), pocas compañías fabrican ranuras MMC en sus dispositivos, pero las MMCs, ligeramente más delgadas y de pines compatibles, pueden usarse en casi cualquier dispositivo que soporte tarjetas SD.
Ranuras CNR
Communication and NetworkingRiser o CNR (en español "elevador de comunicaciones y red") es una ranura de expansión en la placa base para dispositivos de comunicaciones como módems, tarjetas de red, al igual que la ranura audio/modem riser (AMR) también es utilizado para dispositivos de audio. Fue introducido en febrero de 2000 por Intel en sus placas para sus procesadores Pentium y se trataba de un diseño propietario por lo que no se extendió más allá de las placas que incluían los chipsets de Intel.
Adolecía de los mismos problemas de recursos de los dispositivos diseñados para ranura AMR. Actualmente no se incluye en las placas madres.
Nombre y Apellidos del Autor:
Idioma:
Nivel Educativo:
Area de Conocimiento:
se evaluara lo aprendido mediante el reconocimiento de las ranuras de expansion en una placa madre
Introducción:
ver el video de la tarea y aplicar lo aprendido reconocer las ranuras de expasion en la placa madre